
 © 2017 NAFEM
 1 / 7

NAFEM DATA PROTOCOL
System and Data Security Best Practices

PURPOSE OF THIS DOCUMENT

This document describes a typical equipment interface security scheme, and the reasoning

behind it. This document can be used as a starting point for a robust system design, but due to

the evolving nature of digital security issues, this document is not an exact guide for

implementing systems-level digital security. NAFEM assumes no liability for applications or the

design of specific implementations based upon this document. Users of this document are

responsible for their own design.

WHY NOT JUST RELY ON BUILT-IN ENCRYPTION?

A modern restaurant equipment communication network can be described as an “Internet of

Things” (IoT) implementation. These IoT systems are usually designed to run autonomously and

aggregate data at a few key points. The Local Gateway and Server/Cloud are the primary

collection nodes for restaurant equipment data networks.

This document can be applied to any equipment that is capable of communication, whether it is

through the Internet or local wired or wireless communication protocols.

Restaurant IoT data will pass through both private and public networks on its journey to the

Server/Cloud/Data Lake. Wireless data encryption within the restaurant is a start, but there is a

long history of Gateway, Router, and Server data breaches. Since equipment data is decrypted

and re-encrypted at each step of the transport process, this paper explains the need for end-to-

end (or application layer) data security.

This document focuses on complete application layer security, and only relies on transport-level

security (such as Wi-Fi WPA with PSK or HTTPS encryption) as an additional measure in an

overall secure system.

 © 2017 NAFEM
 2 / 7

GLOSSARY OF TERMS

AES: Advanced Encryption Standard is a symmetric block cipher chosen by the U.S.

government to protect classified information. There are many variants with periodic updates

responding to various attacks and improvements in computing power.

Gateway: A device that enables machine-to-machine communication by connecting appliances

in the home, workplace or smart city to cellular, Wi-Fi, or public internet. Gateways are built on

chipsets that include low-power connectivity (typically ZigBee, Bluetooth, or 900Mhz) and data

processing capabilities.

IP Connected, IP Addressable, Internet Connected: Any device or equipment that is

connected to the internet. This includes wired and wireless internet connectivity. Effort should

be made to minimize the visibility of devices to the Internet in general, and have a single

gateway per physical location as it minimizes ongoing security costs and risks.

NIST: National Institute of Standards and Technology.

RSA: Public-key cryptosystems widely used for secure data transmission. Named after the

inventor’s initials: Ron Rivest, Adi Shamir, and Leonard Adleman.

Server: A server is a computer that provides data to other computers. It may serve data to

systems on a local area network (LAN) or a wide area network (WAN) over the Internet. While

server software is specific to the type of server, the hardware is not as important. A regular

desktop computer can be turned into a server by adding the appropriate software.

SHA: Secure Hash Algorithm.

SECURITY MODEL FEATURES

A typical Data Security Model will address the following three key aspects: Confidentiality,

Integrity, and Authentication.

 © 2017 NAFEM
 3 / 7

Confidentiality is the “property that information is not made available or disclosed to

unauthorized individuals, entities, or processes" (ISO/IEC 27000:2016). Using AES, RSA, or other

approved methods, data packets are encrypted, ensuring confidentiality throughout the

transport process.

Integrity is the property that ensures data has not changed between the point of origin and

point of destination. Encryption methods usually make no inherent provisions for data integrity,

and the burden of ensuring data integrity falls upon the application-level data protocol.

Authentication is the property of all components of a data system to prove “they are who they

say they are”. This is where IoT applications present the greatest need for innovative solutions,

as authentication was typically performed by a user inputting a password before using a service.

IoT devices are meant to run autonomously, and a different authentication scheme must be

used.

Additionally, it is recommended to avoid a single key/password per device model, as that

concept caused immeasurable damages during the first decade of home internet usage.

Learning the key/password for a single unit of a popular model of Wi-Fi router or modem gave

direct access to millions of PCs.

IoT Authentication can be better implemented by having a field configurable scheme where the

field technician “programs” the key or certificate into the device during installation. This process

could entail using automatic configuration software on the Gateway, or having a dedicated piece

of software or hardware that sets the keys during initial deployment and site configuration.

ACHIEVING DATA CONFIDENTIALITY WITH ENCRYPTION

There are two major types of encryption traditionally used for transmitting data. Both types of

encryption have advantages and limitations; however, neither one is inherently better overall:

• Symmetric Key Encryption: This method of encryption uses a single key to encrypt and

decrypt the data. The device and the server use the same key for all communications.

Major advantages include:

o Higher performance and more flexible for various packet data sizes.

o Simple key management scheme for device->server communications.

o Lower engineering cost to implement.

 Major challenges include:

o Need to send the key during configuration, which has some vulnerability.

o Difficult to manage machine to machine communications due to need of having every

device’s key stored locally.

• Asymmetric (or Public/Private Key) Encryption: This method uses a widely held public

key to read incoming messages, and keeps a single copy of the private key to create a

message.

Major advantages include:

http://standards.iso.org/ittf/PubliclyAvailableStandards/c066435_ISO_IEC_27000_2016(E).zip

 © 2017 NAFEM
 4 / 7

o Most secure way to register devices and equipment with less attack vectors.

o Improved ability to perform machine to machine communications.

 Major challenges include:

o Higher processing power required to create and read messages.

o Higher engineering costs to implement.

To create the most effective encryption scheme, engineers will use a combination of both

encryption methods: Asymmetric to register a device/key, then Symmetric to perform the

communications itself. That method leverages the best of both methods, but is often not

practical for smaller embedded systems or lower volume production runs. Therefore, using only

symmetric key encryption (AES-256) and having a relatively safe device registration process is

more widely used. The key registration can either be done via factory programming, or by using

a “factory key” to send the initial device setup information to the server.

Either method can be made to work; it is a matter of choice and scaling considerations that

decide whether to go into the asymmetric key algorithms for device registration, or using a

secure factory or wired programming approach.

ENCRYPTION EXAMPLE

Example from section 11.0 of NDPv3 App Note - Equipment Identification Request Message:

ENCRYPTION RESOURCES

To help find a suitable encryption method, the National Institute of Standards and Technology

has implemented a certification listing website, most major software providers are represented.

NIST AES Algorithm Validation List: FIPS-197 Symmetric Algorithms

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

NIST RSA Algorithm Validation List: FIPS-186 Asymmetric Algorithms

http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html

OpenSSL - Open Source Encryption Library: Software package suitable for implementing

equipment encryption. Algorithms and code for both Symmetric (AES) and Asymmetric (RSA)

encryption: NIST listed for both AES and RSA

https://www.openssl.org

CMD_PKT0123øøøø01000

,$ù'_o©L¡ß»«¸µ*w—h8Rçä‚ P}ëâþö

FIGURE 2 – AES-256 ENCRYPTED CMD PACKET

FIGURE 1 - COMMAND PACKET

http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html
http://csrc.nist.gov/groups/STM/cavp/documents/dss/rsanewval.html
https://www.openssl.org/

 © 2017 NAFEM
 5 / 7

ACHIEVING DATA INTEGRITY

To ensure a message has not been modified in transit, a summary field is usually appended to

the message. This summary field or signature is then encrypted with the original message, and

allows the receiver to perform a validation test. If the receiver is unable to match the supplied

summary code through performing an agreed-upon operation, the message is discarded.

As with encryption, the engineer has a choice when deciding on how to achieve data integrity:

Cyclic Redundancy Check (CRC): Provides a computationally efficient method to detect for

data errors. CRCs do not provide protection against malicious packet changes. The very small

size of the CRC does not add significant overhead to the communication protocol.

Hashing Algorithm: Hashes are a more complex algorithm that can be used to verify the

authenticity of a device or message, as well as prevent unintentional errors during transmission.

The resultant hash code to be appended is much larger, and approaches the size of most

typical IoT data packets.

Example from section 11.0 of NDPv3 App Note – Comparing CRC-32 vs SHA-256 lengths

Either of these outputs (figure 4 or 5) would be appended the original message, before

encryption, to allow the receiver to perform the same calculation and compare the result.

DATA INTEGRITY RESOURCES

If using a CRC, there are no governing bodies to approve the algorithm. Finding a CRC

algorithm is generally supported by most hardware and software providers directly.

If using a hashing function like SHA-256, NIST has a similar program to encryption, as a hash is

used for higher security applications and is subject to attacks due to its capabilities. OpenSSL

has many hashing algorithms that are NIST approved.

NIST Secure Hash Algorithm Validation List: FIPS 180-3 Secure Hash Standard

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm

EQUIP_IDFryerøøøøøøøøøøøøøøøøøøøøøøøøøøøA1FryerCoø1234567
890øøøøøøøøøøøøøøøøøøøøV3.00.05øøøøøøø

FIGURE 3 - ORIGINAL EQUIPMENT IDENTIFICATION MESSAGE

51187176b3b33af9c7ad771091653c1744191df4bf0f4c61909c15c7bbc8e845

FIGURE 4 - SHA-256 HASH OUTPUT FOR EQUIPMENT IDENTIFICATION MESSAGE

TDrY

FIGURE 5 - CRC-32 FOR EQUIP ID MESSSAGE

http://csrc.nist.gov/groups/STM/cavp/documents/shs/shaval.htm

 © 2017 NAFEM
 6 / 7

PUTTING IT ALL TOGETHER

To show an example of a minimum viable data protection scheme, a combination of integrity

and security measures are used to ensure proper system operation. The following example will

walk through a typical transaction and show how the data transforms at each step within an

example piece of equipment.

p“ ê“ Õ‡ 3òn¸¿Èñ [› ÍwnÆ…ÂcË† ƒ Ï^©ñ
ÛEp®ÇoÜ¡>UZ51ÊhÃR¹SÁÿ‹ ÎAêìw† #TŠ ×Mñ8Ì²˜ •,SÛ£Ž\˜ – ¼}iÍ•
‡ ³KÀÖÆÎÞÕ‰]w– $-²ì•LŒÜï‚ WdÎðˆ Ž^œ4w•3” š Ñ¦_WŽ_ó‡ hƒ X³Þh

â¤üê4¼£ÁuY|cú¹_O`AsbYyÀŠ úDnGÃ1u

CMD_PKT0123øøøø01000Ðc*…

D0632A85(HEX) == Ðc*…(ASCII)
CRC-32 Matches, Accept Command

EQUIP_IDFryerøøøøøøøøøøøøøøøøøøøøøøøøøøøA1FryerCoø1234
567890øøøøøøøøøøøøøøøøøøøøV3.00.05øøøøøøø

EQUIP_IDFryerøøøøøøøøøøøøøøøøøøøøøøøøøøøA1FryerCoø1234
567890øøøøøøøøøøøøøøøøøøøøV3.00.05øøøøøøø

Gives a CRC-32 of “TDrY”

EQUIP_IDFryerøøøøøøøøøøøøøøøøøøøøøøøøøøøA1FryerCoø1234
567890øøøøøøøøøøøøøøøøøøøøV3.00.05øøøøøøøTDrY

 © 2017 NAFEM
 7 / 7

MANAGING THE DATA

Encryption and decryption is often easier to implement at the server, or if using a more

advanced equipment control board (such as one with embedded Linux). The following

resources cover some of the most widely-used programming environments for servers and high

performance embedded systems, they can be used as a way to efficiently setup and test an

end-to-end encryption scheme.

Java – Javax.Crypto.Cipher Class:

https://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html

.NET (C#) - System.Security.Cryptography.AesManaged Class

https://msdn.microsoft.com/en-

us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx

NEXT STEPS

The other major consideration when developing a security model is encryption key

management. While most equipment will only need encryption to function securely; gateways,

servers, and any device directly connected to the internet will be routinely subject to attacks. A

typical public IP address may be attacked 100’s of times per day, and that number appears to

rise over time.

For key/password management, Java has many built in features to securely store encryption

keys within a large system. .NET has less native support, but there are plenty of 3rd party key

management solutions available for easy implementation.

In embedded systems, the keys can be stored in secure flash, but care must be taken to protect

the data from being read out via JTAG and other debug interfaces. Since physical security is

almost never available for embedded controls, key management and exposure should be

developed to avoid ever having the keys available in a human readable or accessible format.

SUMMARY

While all the communications links in an equipment network may contain inherent security and

integrity, the data will be vulnerable as it is translated between the collection and storage nodes.

Implementing end-to-end application layer security can increase the security and robustness of

a system. Recent widely publicized attacks using IoT devices imply that there may be a shift in

liability towards manufacturers if proper precautions are not taken. While it may add complexity

to device development, there are many organizations to support the development and

implementation of good practices.

https://docs.oracle.com/javase/7/docs/api/javax/crypto/Cipher.html
https://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged(v=vs.110).aspx

